Math 142 Lecture 25 Notes

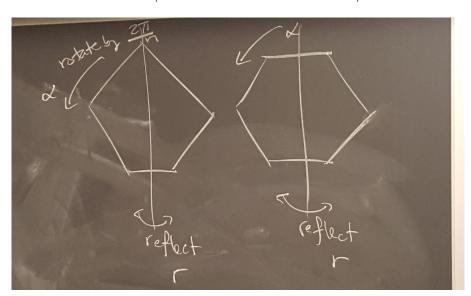
Daniel Raban

April 24, 2018

1 Knot Colorings in Algebraic Topology

1.1 Knot groups

Our goal is to relate *n*-colorings to algebraic topology. We will show that *n*-colorings of K correspond (almost) to homomorphisms $\pi_1(\mathbb{R}^3 \setminus K) \to D_{2n}$; we will actually be overcounting by n. D_{2n} is the group of symmetries of a regular *n*-gon,¹



$$D_{2n} = \left\langle r, \alpha \mid \alpha r = r\alpha^{-1}, r^2 = 1, \alpha^n = 1 \right\rangle.$$

We will work out $\pi_1(\mathbb{R}^3 \setminus K)$ to be the following.

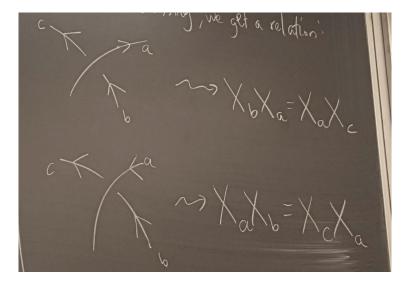
Definition 1.1. The *knot group* of *K* is constructed by:

¹Some people call this group D_n . You should always be clear with your notation when discussing this group.

1. Take a nice projection of K.

2. Put a direction on the knot.

- 3. Number the arcs $1, \ldots, n$.
- 4. $\pi_1(\mathbb{R}^3 \setminus K)$ is generated by x_1, \ldots, x_n (one for each arc).
- 5. For each crossing, we get a relation:



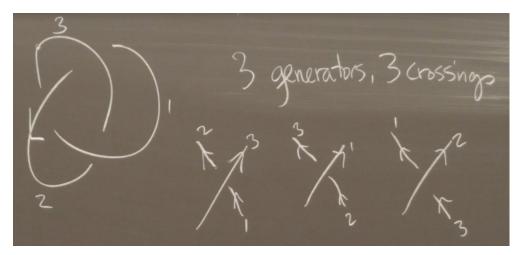
This says that x_c is a conjugate of x_b .

We can also define this for oriented links, but we will not prove that here.

Example 1.1. Let K be the unknot. K has one arc and no crossings, so

$$\pi_1(\mathbb{R}^3 \setminus K) \cong \langle x_1 \rangle \cong \mathbb{Z}.$$

Example 1.2. Let K be the trefoil knot. This has 3 arcs and 3 crossings.



$$\pi_1(\mathbb{R}^3 \setminus K) \cong \langle x_1, x_2, x_3 \mid x_1 x_3 = x_3 x_2, x_2 x_1 = x_1 x_3, x_3 x_2 = x_2 x_1 \rangle$$

Note that $x_3 = x_2 x_1 x_2^{-1}$, so x_3 is a redundant generator.

$$\cong \left\langle x_1, x_2 \mid x_1 x_2 x_1 x_2^{-1} = x_2 x_1 x_2^{-1} x_2, x_2 x_1 = x_1 x_2 x_1 x_2^{-1} \right\rangle$$

Write $a = x_1$, $b = x_2$, and simplify.

$$\cong \langle a, b \mid aba = bab, bab = aba \rangle$$

These relations are redundant.

$$\cong \langle a, b \mid aba = bab \rangle.$$

In general, it is hard to tell apart groups like this by their generators. Before, we used Abelianization to tell apart fundamental groups. However, that approach doesn't work here.

Proposition 1.1. Let K be a knot. Then

$$\operatorname{Ab}(\pi_1(\mathbb{R}^3 \setminus K)) \cong \mathbb{Z}.$$

Proof. Every relation is $x_a x_b = x_b x_c$. This reorders to $x_a x_b = x_c x_b$, which gives us that $x_a = x_c$. Check that all generators are identified this way.

Regardless, we are looking at the right object.

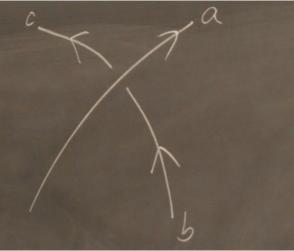
Theorem 1.1 (Gordon-Luecke, 1989). $\pi_1(\mathbb{R}^3 \setminus K_1) \cong \pi_1(\mathbb{R}^3 \setminus K_2)$ iff K_1 and K_2 are equivalent.

So this fundamental group determines the knot up to isotopy or mirroring.

1.2 Correspondence between knot colorings and fundamental group homomorphisms

Theorem 1.2. Let K be a knot. Then there is a correspondence between n-colorings of K and homomorphisms $\pi_1(\mathbb{R}^3 \setminus K) \to D_{2n}$ (except for n homomorphisms).

Proof. Given an *n*-coloring that sends arc *i* to color $\ell_i \in \{1, \ldots, n\}$, construct the homomorphism $\pi_1(\mathbb{R}^3 \setminus K) \to D_{2n}$, via $x_i \mapsto r\alpha^{\ell_i}$. We need to check the relations. At a crossing

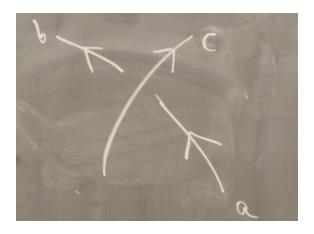


we know that $x_b x_a = x_a x_c$. We get

$$\begin{split} x_b x_a &\mapsto r \alpha^{\ell_b} r \alpha^{\ell_a} = r r \alpha^{-\ell_b} \alpha^{\ell_a} = r^2 \alpha^{\ell_a - \ell_b} = \alpha^{\ell_a - \ell_b}, \\ x_a x_c &\mapsto r \alpha^{\ell_a} r \alpha^{\ell_c} = r r \alpha^{-\ell_a} \alpha^{\ell_c} = r^2 \alpha^{\ell_c - \ell_a} = \alpha^{\ell_c - \ell_a}. \end{split}$$

We want $\alpha^{\ell_a-\ell_b} = \alpha^{\ell_c-\ell_a}$; i.e. we need $\ell_a - \ell_b \equiv \ell_c - \ell_a \pmod{n}$. This is equivalent to $2\ell_a \equiv \ell_b + \ell_c \pmod{n}$, which is the requirement for an *n*-coloring.

The argument is similar for the other crossing type. So we have a homomorphism. We can also go backward (homomorphism to coloring), but only if for all i, $\phi(x_i) = r\alpha^{\ell_i}$ for some ℓ_i ; ℓ_i will be the color of arc i. If $\phi(x_a) = \alpha^{\ell_i}$ for some a, we need $\phi(x_a x_c) = \phi(x_c x_b)$.



Count how many reflections we have on the left hand side and on the right.

		RHS $\#$ refls.	$\phi(x_c)$	$\phi(x_b)$
LHS $\#$ refls.	$\phi(x_c)$	0	$r\alpha^{\ell_c}$	$r\alpha^{\ell_b}$
1	$r\alpha^{\ell_c}$	1		α^{ℓ_b}
0	α^{ℓ_c}	1	α^{ℓ_c}	$r \alpha^{\ell_b}$
	1	0	α^{ℓ_c}	α^{ℓ_b}

In either case, $\phi(x_b) = \alpha^{\ell_b}$ for some ℓ_b . Follow our knot around, doing the same analysis at every crossing. Then $\phi(x_i) = \alpha^{\ell_i}$ for all *i*.

Now $\phi(x_a x_b) = \phi(x_c x_b)$ iff $\alpha^{\ell_a} \alpha^{\ell_c} = \alpha^{\ell_c} \alpha^{\ell_b}$. This is the condition that $\ell_a \equiv \ell_b \pmod{n}$. Check that this makes $\phi(x_i) = \phi(x_j)$ for al i, j. So ignore these homomorphisms (there are n of them). Hence,

$$|\{n\text{-colorings of } K\}| = |\{\text{homomorphisms } \pi_1(\mathbb{R}^3 \setminus K) \to D_{2n}\}| - n.$$

Here is an application of this result.

Example 1.3. Let K be a knot siting on a torus that gives the element $3, 4 \in \pi_1(T^2)$; this goes 3 times around the torus and 4 times through the center hole. We can show that $\pi_1(\mathbb{R}^3 \setminus K) \cong \langle a, b \mid a^3 = b^4 \rangle$.

K is not n colorable for any n. If $\phi : \pi_1(\mathbb{R}^3 \setminus K) \to D_{2n}$ is a homomorphism such that $\phi(a) = r\alpha^i$ and $\phi(b) = r\alpha^j$, we need that $\phi(a)^3 = \phi(b)^4$. But $\phi(a)^3 = r\alpha^i r\alpha^i r\alpha^i = r\alpha^i$ and $r\alpha^j r\alpha^j r\alpha^j r\alpha^j = 1$. So we have a contradiction.